Problem Set 3

Problem 1. Suppose that $K \subset S^3$, n is a positive integer. Prove that the set
$$\{s \in \text{Spin}^c(S^3_K(n)) \mid HF_{\text{red}}(S^3_K(n), s) \neq 0\}$$
has at most $2g(K)-1$ elements. In particular, if Y is a rational homology sphere, and there are exactly N Spinc structures $s \in \text{Spin}^c(Y)$ satisfying $HF_{\text{red}}(Y, s) \neq 0$, then Y cannot be obtained by integer surgery on any knot in S^3 with genus $\leq \frac{N}{2}$.

Problem 2. Let $K \subset S^3$ be an L-space knot, $C = CFK^\infty(S^3, K)$, $k \in \mathbb{Z}$.
(1) Prove that $H_*(C\{i < 0, j \geq k\}) \cong \mathbb{Z}[U^{-1}, \ldots, U^{1-t}]$ for some integer $t \geq 0$.
(2) Prove
$$\chi(C\{i < 0, j \geq k\}) = t_k = \sum_{n=1}^{\infty} n \alpha_{n+k},$$
where α_i’s are the coefficients of the normalized Alexander polynomial.
(3) Prove $t = t_k$.

Problem 3. Let $K \subset S^3$ be an L-space knot, $C = CFK^\infty(S^3, K)$, $k \in \mathbb{Z}$.
(1) Prove that $H_*(C\{\max(i, j-k) = 0\}) \cong \mathbb{Z}$.
(2) Prove that $H_*(C\{i < 0, j = k\})$ is either 0 or \mathbb{Z}, the same is true for $H_*(C\{i = 0, j \leq k\})$.
(3) Prove that exactly one of the two groups $H_*(C\{i < 0, j = k\})$ and $H_*(C\{i = 0, j \leq k\})$ is \mathbb{Z}.
(4) Prove that if $H_*(C\{i = 0, j = k\}) \cong \mathbb{Z}^2$, then both $H_*(C\{i < 0, j = k\})$ and $H_*(C\{i \leq 0, j = k\})$ are \mathbb{Z}.
(5) Prove that $H_*(C\{i = 0, j = k\})$ is either 0 or \mathbb{Z}. As a consequence, the coefficients of the Alexander polynomial of an L-space knot are 0 or ± 1.

1
Exercises for Lecture 3

1. Let \(V \cong \mathbb{R}^2 \) and \(\phi_j : V \rightarrow \mathbb{R} \) a non-zero homomorphism for \(1 \leq j \leq n \). Define
 \[
 \| \cdot \| : V \rightarrow [0, \infty) \quad v \mapsto \sum_j |\phi_j(v)|
 \]
 (a) Show that \(\| \cdot \| \) is a (non-zero) seminorm.
 (b) If \(\| \cdot \| \) is a norm show that its ball of radius 1 is a finite-sided polygon each of whose vertices lies on one of the lines \(\ker(\phi_j) \).
 (c) Determine the ball of radius 1 of \(\| \cdot \| \) when it is not a norm.

2. If \(M \) is the trefoil exterior then \(\pi_1(M) = \langle \gamma_1, \gamma_2 : \gamma_1^2 = \gamma_2^3 \rangle \). The fundamental group of \(\partial M \) is generated by a meridian
 \[
 \mu = \gamma_1 \gamma_2^{-1}
 \]
 and the Seifert fibre class
 \[
 h = \gamma_1^2,
 \]
 which is central in \(\pi_1(M) \). We saw in Lecture 2 that \(X^{irr}(M) \) is a curve \(X_0 \) which has image \(\{(0,1,w) : w \in \mathbb{C} \} \cong \mathbb{C} \) under the map \(X_0 \rightarrow \mathbb{C}^3, \chi \mapsto (\chi(\gamma_1), \chi(\gamma_2), \chi(\gamma_1 \gamma_2)) \).
 (a) Show that for \(z \in \mathbb{C} \) there is a homomorphism \(\rho_z : \pi_1(M) \rightarrow SL(2,\mathbb{C}) \) given by
 \[
 \rho_z(\gamma_1) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad \rho_z(\gamma_2) = \begin{pmatrix} z & -(z^2 - z + 1) \\ 1 & 1 - z \end{pmatrix}
 \]
 and that the map \(z \mapsto \chi_{\rho_z} \) parametrises \(X_0 \).
 (b) Show that \(\| h \|_{X_0} = 0 \) and \(\| \mu \|_{X_0} = 2^1 \) and deduce that if \(\alpha \in H_1(\partial M) \) then
 \[
 \| \alpha \|_{X_0} = 2|\alpha \cdot h|
 \]
 where \(\alpha \cdot h \) is the algebraic intersection of \(\alpha \) and \(h \) on \(\partial M \).

\(^1\text{Hint:} \) Since \(X_0 \cong \mathbb{C} \) it has a unique ideal point. Recall that \(\mu = \gamma_1 \gamma_2^{-1} \). Calculate the multiplicity of the ideal point as a pole of \(f_\mu : X_0 \rightarrow \mathbb{C} \) using the parametrisation of \(X_0 \) given above.
0.1 References for Lecture 3
